SAFETY DATA SHEETS

This SDS packet was issued with item:

075013099

The safety data sheets (SDS) in this packet apply to one or more components included in the items listed below. Items listed below may require one or more SDS. Please refer to invoice for specific item number(s).

075013008 075013024 075013081 075013107 075014006 079355676 079355703 079355706

Safety Data Sheet

Copyright, 2015, 3M Company.

All rights reserved. Copying and/or downloading of this information for the purpose of properly utilizing 3M products is allowed provided that: (1) the information is copied in full with no changes unless prior written agreement is obtained from 3M, and (2) neither the copy nor the original is resold or otherwise distributed with the intention of earning a profit thereon.

 Document Group:
 18-3483-7
 Version Number:
 6.00

 Issue Date:
 04/16/15
 Supercedes Date:
 04/11/05

Product identifier

3MTM ESPETM EXPRESSTM LIGHT BODY REGULAR SET

ID Number(s):

70-2010-3657-4, 70-2010-3659-0, 70-2010-3660-8

Recommended use

Dental Product, Impressions

Supplier's details

MANUFACTURER: 3M

DIVISION: 3M ESPE Dental Products

ADDRESS: 3M Center, St. Paul, MN 55144-1000, USA

Telephone: 1-888-3M HELPS (1-888-364-3577)

Emergency telephone number

1-800-364-3577 or (651) 737-6501 (24 hours)

This product is a kit or a multipart product which consists of multiple, independently packaged components. A Safety Data Sheet (SDS), Article Information Sheet (AIS), or Article Information Letter (AIL) for each of these components is included. Please do not separate the component documents from this cover page. The document numbers for components of this product are:

18-3007-4, 18-3003-3

DISCLAIMER: The information in this Safety Data Sheet (SDS) is believed to be correct as of the date issued. 3M MAKES NO WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, ANY IMPLIED WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE OR COURSE OF PERFORMANCE OR USAGE OF TRADE. User is responsible for determining whether the 3M product is fit for a particular purpose and suitable for user's method of use or application. Given the variety of factors that can affect the use and application of a 3M product, some of which are uniquely within the user's knowledge and control, it is essential that the user evaluate the 3M product to determine whether it is fit for a particular purpose and suitable for user's method of use or application.

3M provides information in electronic form as a service to its customers. Due to the remote possibility that electronic transfer may have resulted in errors, omissions or alterations in this information, 3M makes no representations as to its completeness or accuracy. In addition, information obtained from a database may not be as current as the information in the SDS available directly from 3M

3MTM ESPETM EXPRESSTM LIGHT BODY REGULAR	SET 04/16/15		
A STATE STAT	322 0 110,10		
M NGA GDG			
M USA SDSs are available at www.3M.com			

Safety Data Sheet

Copyright, 2014, 3M Company.

All rights reserved. Copying and/or downloading of this information for the purpose of properly utilizing 3M products is allowed provided that: (1) the information is copied in full with no changes unless prior written agreement is obtained from 3M, and (2) neither the copy nor the original is resold or otherwise distributed with the intention of earning a profit thereon.

 Document Group:
 18-3003-3
 Version Number:
 6.00

 Issue Date:
 10/07/14
 Supercedes Date:
 10/02/06

SECTION 1: Identification

1.1. Product identifier

3MTM ESPETM EXPRESSTM LIGHT BODY REGULAR WASH BASE

Product Identification Numbers

LE-FBAS-0927-7

1.2. Recommended use and restrictions on use

Recommended use

Dental Product, Impression material

Restrictions on use

For use only by dental professionals

1.3. Supplier's details

MANUFACTURER: 3M

DIVISION: 3M ESPE Dental Products

ADDRESS: 3M Center, St. Paul, MN 55144-1000, USA **Telephone:** 1-888-3M HELPS (1-888-364-3577)

1.4. Emergency telephone number

1-800-364-3577 or (651) 737-6501 (24 hours)

SECTION 2: Hazard identification

This document has been prepared in accordance with the U.S. OSHA Hazard Communication Standard, which requires the inclusion of all known hazards of the product or ingredients regardless of the potential risk. The risks of the hazards communicated in this document may vary depending on the potential for exposure.

2.1. Hazard classification

Not classified as hazardous according to OSHA Hazard Communication Standard, 29 CFR 1910.1200.

2.2. Label elements

Signal word

Not applicable.

Symbols

Not applicable.

Page 1 of 9

Pictograms

Not applicable.

2.3. Hazards not otherwise classified

None.

SECTION 3: Composition/information on ingredients

Ingredient	C.A.S. No.	% by Wt
QUARTZ SILICA	14808-60-7	45 - 55 Trade Secret *
VINYL POLYDIMETHYLSILOXANE	68083-19-2	30 - 40 Trade Secret *
DIMETHYL METHYL HYDROGEN SILICONE	68037-59-2	3 - 10 Trade Secret *
FLUID		
SILANE TREATED SILICA	67762-90-7	3 - 10 Trade Secret *
POLY(DIMETHYLSILOXANE)	63148-62-9	1 5 Trade Secret *

^{*}The specific chemical identity and/or exact percentage (concentration) of this composition has been withheld as a trade secret.

SECTION 4: First aid measures

4.1. Description of first aid measures

Inhalation:

Remove person to fresh air. If you feel unwell, get medical attention.

Skin Contact:

Wash with soap and water. If signs/symptoms develop, get medical attention.

Eye Contact:

Flush with large amounts of water. Remove contact lenses if easy to do. Continue rinsing. If signs/symptoms persist, get medical attention.

If Swallowed:

Rinse mouth. If you feel unwell, get medical attention.

4.2. Most important symptoms and effects, both acute and delayed

See Section 11.1. Information on toxicological effects.

4.3. Indication of any immediate medical attention and special treatment required

Not applicable

SECTION 5: Fire-fighting measures

5.1. Suitable extinguishing media

In case of fire: Use a fire fighting agent suitable for ordinary combustible material such as water or foam to extinguish.

5.2. Special hazards arising from the substance or mixture

None inherent in this product.

Hazardous Decomposition or By-Products

Substance
Carbon monoxide
Carbon dioxide

Condition

During Combustion
During Combustion

Irritant Vapors or Gases

During Combustion

5.3. Special protective actions for fire-fighters

No special protective actions for fire-fighters are anticipated.

SECTION 6: Accidental release measures

6.1. Personal precautions, protective equipment and emergency procedures

Ventilate the area with fresh air. Observe precautions from other sections.

6.2. Environmental precautions

Avoid release to the environment.

6.3. Methods and material for containment and cleaning up

Collect as much of the spilled material as possible. Place in a closed container approved for transportation by appropriate authorities. Clean up residue. Dispose of collected material as soon as possible.

SECTION 7: Handling and storage

7.1. Precautions for safe handling

Avoid prolonged or repeated skin contact. Avoid contact with oxidizing agents (eg. chlorine, chromic acid etc.)

7.2. Conditions for safe storage including any incompatibilities

Store away from heat. Store away from acids. Store away from strong bases. Store away from oxidizing agents. Store away from amines.

SECTION 8: Exposure controls/personal protection

8.1. Control parameters

Occupational exposure limits

If a component is disclosed in section 3 but does not appear in the table below, an occupational exposure limit is not available for the component.

Ingredient	C.A.S. No.	Agency	Limit type	Additional Comments
QUARTZ SILICA	14808-60-7	ACGIH	TWA(respirable	A2: Suspected human
			fraction):0.025 mg/m3	carcin.
QUARTZ SILICA	14808-60-7	OSHA	TWA concentration(as total	
			dust):0.3 mg/m3;TWA	
			concentration(respirable):0.1	
			mg/m3(2.4 millions of	
			particles/cu. ft.)	
SILANE TREATED SILICA	67762-90-7	CMRG	CEIL:5 mg/m3	
SILICA, AMORPHOUS	67762-90-7	OSHA	TWA concentration:0.8	
			mg/m3;TWA:20 millions of	
			particles/cu. ft.	

ACGIH: American Conference of Governmental Industrial Hygienists

AIHA: American Industrial Hygiene Association

CMRG: Chemical Manufacturer's Recommended Guidelines

OSHA: United States Department of Labor - Occupational Safety and Health Administration

TWA: Time-Weighted-Average STEL: Short Term Exposure Limit

CEIL: Ceiling

8.2. Exposure controls

Page 3 of 9

8.2.1. Engineering controls

Use in a well-ventilated area.

8.2.2. Personal protective equipment (PPE)

Eye/face protection

Select and use eye/face protection to prevent contact based on the results of an exposure assessment. The following eye/face protection(s) are recommended:

Safety Glasses with side shields

Skin/hand protection

See Section 7.1 for additional information on skin protection.

Respiratory protection

Respiratory protection is not required.

SECTION 9: Physical and chemical properties

9.1. Information on basic physical and chemical properties

General Physical Form: Solid **Specific Physical Form:** Paste

Odor, Color, Grade:odorless, green, pasteOdor thresholdNo Data AvailablepHNot ApplicableMelting pointNo Data AvailableBoiling PointNot Applicable

Flash Point

Evaporation rateNot ApplicableFlammability (solid, gas)Not ClassifiedFlammable Limits(LEL)Not ApplicableFlammable Limits(UEL)Not ApplicableVapor PressureNot ApplicableVapor DensityNot ApplicableDensity1.4 - 1.5 g/ml

Specific Gravity > 1.4 [*Ref Std:* WATER=1]

Solubility in Water Negligible Solubility- non-water No Data Available Partition coefficient: n-octanol/ water Not Applicable **Autoignition temperature** No Data Available No Data Available **Decomposition temperature** No Data Available Viscosity **Volatile Organic Compounds** Not Applicable Percent volatile No Data Available **VOC Less H2O & Exempt Solvents** Not Applicable

SECTION 10: Stability and reactivity

10.1. Reactivity

This material may be reactive with certain agents under certain conditions - see the remaining headings in this section.

10.2. Chemical stability

Stable.

Page 4 of 9

10.3. Possibility of hazardous reactions

Hazardous polymerization will not occur.

10.4. Conditions to avoid

Heat

10.5. Incompatible materials

Amines Strong acids Strong bases Strong oxidizing agents

10.6. Hazardous decomposition products

Substance

Condition

None known.

Refer to section 5.2 for hazardous decomposition products during combustion.

SECTION 11: Toxicological information

The information below may not be consistent with the material classification in Section 2 if specific ingredient classifications are mandated by a competent authority. In addition, toxicological data on ingredients may not be reflected in the material classification and/or the signs and symptoms of exposure, because an ingredient may be present below the threshold for labeling, an ingredient may not be available for exposure, or the data may not be relevant to the material as a whole.

This document has been prepared in accordance with the U.S. OSHA Hazard Communication Standard, which requires the inclusion of all known hazards of the product or ingredients regardless of the potential risk. The risks of the hazards communicated in this document may vary depending on the potential for exposure.

The information below represents toxicological information associated with the individual components of the uncured product. Once properly mixed and/or cured, the product is safe for its intended use.

11.1. Information on Toxicological effects

Signs and Symptoms of Exposure

Based on test data and/or information on the components, this material may produce the following health effects:

Inhalation:

No health effects are expected.

Skin Contact:

Contact with the skin during product use is not expected to result in significant irritation.

Eye Contact:

Contact with the eyes during product use is not expected to result in significant irritation.

Ingestion:

No health effects are expected.

Carcinogenicity:

Exposures needed to cause the following health effect(s) are not expected during normal, intended use:

Contains a chemical or chemicals which can cause cancer.

Ingredient	C.A.S. No.	Class Description	Regulation
SILICA, CRYS AIRRESP	14808-60-7	Known human carcinogen	National Toxicology Program Carcinogens
QUARTZ SILICA	14808-60-7	Grp. 1: Carcinogenic to humans	International Agency for Research on Cancer

Toxicological Data

If a component is disclosed in section 3 but does not appear in a table below, either no data are available for that endpoint or the data are not sufficient for classification.

Acute Toxicity

Name	Route	Species	Value
Overall product	Dermal		No data available; calculated ATE > 5,000 mg/kg
Overall product	Ingestion		No data available; calculated ATE > 5,000 mg/kg
QUARTZ SILICA	Dermal		LD50 estimated to be > 5,000 mg/kg
QUARTZ SILICA	Ingestion		LD50 estimated to be > 5,000 mg/kg
VINYL POLYDIMETHYLSILOXANE	Dermal	Rabbit	LD50 > 15,440 mg/kg
VINYL POLYDIMETHYLSILOXANE	Ingestion	Rat	LD50 > 15,440 mg/kg
DIMETHYL METHYL HYDROGEN SILICONE FLUID	Dermal	Rabbit	LD50 > 2,000 mg/kg
DIMETHYL METHYL HYDROGEN SILICONE FLUID	Inhalation-	Rat	LC50 4.2 mg/l
	Dust/Mist		
	(4 hours)		
DIMETHYL METHYL HYDROGEN SILICONE FLUID	Ingestion	Rat	LD50 > 2,000 mg/kg
SILANE TREATED SILICA	Dermal	Rabbit	LD50 > 5,000 mg/kg
SILANE TREATED SILICA	Inhalation-	Rat	LC50 > 0.691 mg/l
	Dust/Mist		
	(4 hours)		
SILANE TREATED SILICA	Ingestion	Rat	LD50 > 5,110 mg/kg
POLY(DIMETHYLSILOXANE)	Dermal	Rabbit	LD50 > 19,400 mg/kg
POLY(DIMETHYLSILOXANE)	Ingestion	Rat	LD50 > 17,000 mg/kg

ATE = acute toxicity estimate

Skin Corrosion/Irritation

Name	Species	Value
QUARTZ SILICA		No significant irritation
VINYL POLYDIMETHYLSILOXANE	Rabbit	No significant irritation
SILANE TREATED SILICA	Rabbit	No significant irritation
POLY(DIMETHYLSILOXANE)	Rabbit	No significant irritation

Serious Eye Damage/Irritation

Name	Species	Value
VINYL POLYDIMETHYLSILOXANE	Rabbit	Mild irritant
SILANE TREATED SILICA	Rabbit	No significant irritation
POLY(DIMETHYLSILOXANE)	Rabbit	No significant irritation

Skin Sensitization

Name	Species	Value
SILANE TREATED SILICA	Human	Not sensitizing
	and	
	animal	

Respiratory Sensitization

Name	Species	1	Value

Germ Cell Mutagenicity

Germ Cen Muagement		
Name	Route	Value
QUARTZ SILICA	In Vitro	Some positive data exist, but the data are not sufficient for classification
		sufficient for classification
QUARTZ SILICA	In vivo	Some positive data exist, but the data are not
		sufficient for classification
SILANE TREATED SILICA	In Vitro	Not mutagenic

Carcinogenicity

Name	Route	Species	Value
QUARTZ SILICA	Inhalation	Human	Carcinogenic
		and	
		animal	
SILANE TREATED SILICA	Not	Mouse	Some positive data exist, but the data are not
	Specified		sufficient for classification

Reproductive Toxicity

Reproductive and/or Developmental Effects

Name	Route	Value	Species	Test Result	Exposure Duration
SILANE TREATED SILICA	Ingestion	Not toxic to female reproduction	Rat	NOAEL 509 mg/kg/day	1 generation
SILANE TREATED SILICA	Ingestion	Not toxic to male reproduction	Rat	NOAEL 497 mg/kg/day	1 generation
SILANE TREATED SILICA	Ingestion	Not toxic to development	Rat	NOAEL 1,350 mg/kg/day	during organogenesi s

Target Organ(s)

Specific Target Organ Toxicity - single exposure

Name	Route	Target Organ(s)	Value	Species	Test Result	Exposure
						Duration

Specific Target Organ Toxicity - repeated exposure

Specific Turget Organ	2 0122020	cpeated exposure				
Name	Route	Target Organ(s)	Value	Species	Test Result	Exposure Duration
QUARTZ SILICA	Inhalation	silicosis	Causes damage to organs through prolonged or repeated exposure	Human	NOAEL Not available	occupational exposure
SILANE TREATED SILICA	Inhalation	respiratory system silicosis	All data are negative	Human	NOAEL Not available	occupational exposure

Aspiration Hazard

	15 P 11 W 1 C 11 11 11 C	
ı	Name	Value

Please contact the address or phone number listed on the first page of the SDS for additional toxicological information on this material and/or its components.

SECTION 12: Ecological information

Ecotoxicological information

Please contact the address or phone number listed on the first page of the SDS for additional ecotoxicological information on this material and/or its components.

Chemical fate information

Please contact the address or phone number listed on the first page of the SDS for additional chemical fate information on this material and/or its components.

SECTION 13: Disposal considerations

13.1. Disposal methods

Dispose of contents/ container in accordance with the local/regional/national/international regulations.

Incinerate in a permitted waste incineration facility. As a disposal alternative, utilize an acceptable permitted waste disposal

facility. If no other disposal options are available, waste product may be placed in a landfill properly designed for industrial waste.

SECTION 14: Transport Information

For Transport Information, please visit http://3M.com/Transportinfo or call 1-800-364-3577 or 651-737-6501.

SECTION 15: Regulatory information

15.1. US Federal Regulations

Contact 3M for more information.

311/312 Hazard Categories:

Fire Hazard - No Pressure Hazard - No Reactivity Hazard - No Immediate Hazard - No Delayed Hazard - No

15.2. State Regulations

Contact 3M for more information.

15.3. Chemical Inventories

The components of this product are in compliance with the new substance notification requirements of CEPA.

This material contains one or more substances not listed on the TSCA Inventory. Commercial use of this material is regulated by the FDA.

Contact 3M for more information.

15.4. International Regulations

Contact 3M for more information.

This SDS has been prepared to meet the U.S. OSHA Hazard Communication Standard, 29 CFR 1910.1200.

SECTION 16: Other information

NFPA Hazard Classification

Health: 0 Flammability: 1 Instability: 0 Special Hazards: None

National Fire Protection Association (NFPA) hazard ratings are designed for use by emergency response personnel to address the hazards that are presented by short-term, acute exposure to a material under conditions of fire, spill, or similar emergencies. Hazard ratings are primarily based on the inherent physical and toxic properties of the material but also include the toxic properties of combustion or decomposition products that are known to be generated in significant quantities.

 Document Group:
 18-3003-3
 Version Number:
 6.00

 Issue Date:
 10/07/14
 Supercedes Date:
 10/02/06

DISCLAIMER: The information in this Safety Data Sheet (SDS) is believed to be correct as of the date issued. 3M MAKES NO WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, ANY IMPLIED WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE OR COURSE OF PERFORMANCE OR USAGE OF TRADE. User is responsible for determining whether the 3M product is fit for a particular purpose and suitable for user's method of use or application. Given the variety of factors that can affect the use and application of a 3M product,

Page 8 of 9

some of which are uniquely within the user's knowledge and control, it is essential that the user evaluate the 3M product to determine whether it is fit for a particular purpose and suitable for user's method of use or application.

3M provides information in electronic form as a service to its customers. Due to the remote possibility that electronic transfer may have resulted in errors, omissions or alterations in this information, 3M makes no representations as to its completeness or accuracy. In addition, information obtained from a database may not be as current as the information in the SDS available directly from 3M

3M USA SDSs are available at www.3M.com

Page 9 of 9

Safety Data Sheet

Copyright, 2014, 3M Company.

All rights reserved. Copying and/or downloading of this information for the purpose of properly utilizing 3M products is allowed provided that: (1) the information is copied in full with no changes unless prior written agreement is obtained from 3M, and (2) neither the copy nor the original is resold or otherwise distributed with the intention of earning a profit thereon.

 Document Group:
 18-3007-4
 Version Number:
 11.00

 Issue Date:
 10/07/14
 Supercedes Date:
 03/26/14

SECTION 1: Identification

1.1. Product identifier

3MTM ESPETM EXPRESSTM LIGHT BODY FAST WASH/REGULAR BODY WASH CATALYST

Product Identification Numbers

LE-FCAT-5925-6

1.2. Recommended use and restrictions on use

Recommended use

Dental Product, Dental impression material

Restrictions on use

For use only by dental professionals

1.3. Supplier's details

MANUFACTURER: 3M

DIVISION: 3M ESPE Dental Products

ADDRESS: 3M Center, St. Paul, MN 55144-1000, USA **Telephone:** 1-888-3M HELPS (1-888-364-3577)

1.4. Emergency telephone number

1-800-364-3577 or (651) 737-6501 (24 hours)

SECTION 2: Hazard identification

This document has been prepared in accordance with the U.S. OSHA Hazard Communication Standard, which requires the inclusion of all known hazards of the product or ingredients regardless of the potential risk. The risks of the hazards communicated in this document may vary depending on the potential for exposure.

2.1. Hazard classification

Not classified as hazardous according to OSHA Hazard Communication Standard, 29 CFR 1910.1200.

2.2. Label elements

Signal word

Not applicable.

Symbols

Not applicable.

Page 1 of 9

Pictograms

Not applicable.

2.3. Hazards not otherwise classified

None.

SECTION 3: Composition/information on ingredients

Ingredient	C.A.S. No.	% by Wt
VINYL POLYDIMETHYLSILOXANE	68083-19-2	40 - 50 Trade Secret *
QUARTZ SILICA	14808-60-7	40 - 50 Trade Secret *
SILANE TREATED SILICA	67762-90-7	1 - 10 Trade Secret *
POLYETHYLENE GLYCOL, SILOXANE	27306-78-1	< 0.5 Trade Secret *
TERMINATED		
C.I. PIGMENT BLUE 28	1345-16-0	< 0.3 Trade Secret *

^{*}The specific chemical identity and/or exact percentage (concentration) of this composition has been withheld as a trade secret.

SECTION 4: First aid measures

4.1. Description of first aid measures

Inhalation:

Remove person to fresh air. If you feel unwell, get medical attention.

Skin Contact:

Wash with soap and water. If signs/symptoms develop, get medical attention.

Eye Contact:

Flush with large amounts of water. Remove contact lenses if easy to do. Continue rinsing. If signs/symptoms persist, get medical attention.

If Swallowed:

Rinse mouth. If you feel unwell, get medical attention.

4.2. Most important symptoms and effects, both acute and delayed

See Section 11.1. Information on toxicological effects.

4.3. Indication of any immediate medical attention and special treatment required

Not applicable

SECTION 5: Fire-fighting measures

5.1. Suitable extinguishing media

In case of fire: Use a fire fighting agent suitable for ordinary combustible material such as water or foam to extinguish.

5.2. Special hazards arising from the substance or mixture

None inherent in this product.

Hazardous Decomposition or By-Products

<u>Substance</u> Carbon monoxide Carbon dioxide Condition

During Combustion
During Combustion

Irritant Vapors or Gases

During Combustion

5.3. Special protective actions for fire-fighters

No special protective actions for fire-fighters are anticipated.

SECTION 6: Accidental release measures

6.1. Personal precautions, protective equipment and emergency procedures

Ventilate the area with fresh air. Observe precautions from other sections.

6.2. Environmental precautions

Avoid release to the environment.

6.3. Methods and material for containment and cleaning up

Collect as much of the spilled material as possible. Place in a closed container approved for transportation by appropriate authorities. Clean up residue. Seal the container. Dispose of collected material as soon as possible.

SECTION 7: Handling and storage

7.1. Precautions for safe handling

Avoid prolonged or repeated skin contact. Do not eat, drink or smoke when using this product. Wash thoroughly after handling. Avoid contact with oxidizing agents (eg. chlorine, chromic acid etc.)

7.2. Conditions for safe storage including any incompatibilities

Store away from heat. Store away from acids. Store away from strong bases. Store away from oxidizing agents. Store away from amines.

SECTION 8: Exposure controls/personal protection

8.1. Control parameters

Occupational exposure limits

If a component is disclosed in section 3 but does not appear in the table below, an occupational exposure limit is not available for the component.

Ingredient	C.A.S. No.	Agency	Limit type	Additional Comments
QUARTZ SILICA	14808-60-7	ACGIH	TWA(respirable	A2: Suspected human
			fraction):0.025 mg/m3	carcin.
QUARTZ SILICA	14808-60-7	OSHA	TWA concentration(as total	
			dust):0.3 mg/m3;TWA	
			concentration(respirable):0.1	
			mg/m3(2.4 millions of	
			particles/cu. ft.)	
SILANE TREATED SILICA	67762-90-7	CMRG	CEIL:5 mg/m3	

ACGIH: American Conference of Governmental Industrial Hygienists

AIHA: American Industrial Hygiene Association

CMRG: Chemical Manufacturer's Recommended Guidelines

OSHA: United States Department of Labor - Occupational Safety and Health Administration

TWA: Time-Weighted-Average STEL: Short Term Exposure Limit

CEIL: Ceiling

8.2. Exposure controls

8.2.1. Engineering controls

Use in a well-ventilated area.

Page 3 of 9

8.2.2. Personal protective equipment (PPE)

Eye/face protection

Select and use eye/face protection to prevent contact based on the results of an exposure assessment. The following eye/face protection(s) are recommended:

Safety Glasses with side shields

Skin/hand protection

See Section 7.1 for additional information on skin protection.

Respiratory protection

None required.

SECTION 9: Physical and chemical properties

9.1. Information on basic physical and chemical properties

General Physical Form: Solid
Specific Physical Form: Paste

Odor, Color, Grade: Characteristic odor, blue, paste

Odor thresholdNo Data AvailablepHNot ApplicableMelting pointNo Data AvailableBoiling PointNot Applicable

Flash Point Flash point > 93 °C (200 °F)

Evaporation rateNot ApplicableFlammability (solid, gas)Not ClassifiedFlammable Limits(LEL)Not ApplicableFlammable Limits(UEL)Not ApplicableVapor PressureNot ApplicableVapor DensityNot ApplicableDensity1.4 - 1.5 g/cm3

Specific Gravity > 1.4 [*Ref Std:* WATER=1]

Solubility in Water Negligible Solubility- non-water No Data Available Partition coefficient: n-octanol/ water Not Applicable **Autoignition temperature** No Data Available No Data Available **Decomposition temperature** Viscosity No Data Available **Volatile Organic Compounds** No Data Available Percent volatile No Data Available No Data Available **VOC Less H2O & Exempt Solvents**

SECTION 10: Stability and reactivity

10.1. Reactivity

This material may be reactive with certain agents under certain conditions - see the remaining headings in this section.

10.2. Chemical stability

Stable.

10.3. Possibility of hazardous reactions

Hazardous polymerization will not occur.

10.4. Conditions to avoid

Heat

10.5. Incompatible materials

Amines
Strong acids
Strong bases
Strong oxidizing agents

10.6. Hazardous decomposition products

Substance

Condition

None known.

Refer to section 5.2 for hazardous decomposition products during combustion.

SECTION 11: Toxicological information

The information below may not be consistent with the material classification in Section 2 if specific ingredient classifications are mandated by a competent authority. In addition, toxicological data on ingredients may not be reflected in the material classification and/or the signs and symptoms of exposure, because an ingredient may be present below the threshold for labeling, an ingredient may not be available for exposure, or the data may not be relevant to the material as a whole.

This document has been prepared in accordance with the U.S. OSHA Hazard Communication Standard, which requires the inclusion of all known hazards of the product or ingredients regardless of the potential risk. The risks of the hazards communicated in this document may vary depending on the potential for exposure. The information below represents toxicological information associated with the individual components of the uncured product. Once properly mixed and/or cured, the product is safe for its intended use.

11.1. Information on Toxicological effects

Signs and Symptoms of Exposure

Based on test data and/or information on the components, this material may produce the following health effects:

Inhalation:

This product may have a characteristic odor; however, no adverse health effects are anticipated.

Skin Contact:

Contact with the skin during product use is not expected to result in significant irritation.

Eye Contact:

Contact with the eyes during product use is not expected to result in significant irritation.

Ingestion:

Gastrointestinal Irritation: Signs/symptoms may include abdominal pain, stomach upset, nausea, vomiting and diarrhea.

Carcinogenicity:

Exposures needed to cause the following health effect(s) are not expected during normal, intended use:

Contains a chemical or chemicals which can cause cancer.

Ingredient C.A.S. No. Class Description Regulation	
--	--

SILICA, CRYS AIRRESP	14808-60-7	Known human carcinogen	National Toxicology Program Carcinogens
Generic: Cobalt and inorganic cobalt	1345-16-0	Grp. 2B: Possible human carc.	International Agency for Research on Cancer
compounds			
QUARTZ SILICA	14808-60-7	Grp. 1: Carcinogenic to humans	International Agency for Research on Cancer

Toxicological Data

If a component is disclosed in section 3 but does not appear in a table below, either no data are available for that endpoint or the data are not sufficient for classification.

Acute Toxicity

Name	Route	Species	Value
Overall product	Ingestion		No data available; calculated ATE > 5,000 mg/kg
VINYL POLYDIMETHYLSILOXANE	Dermal	Rabbit	LD50 > 15,440 mg/kg
VINYL POLYDIMETHYLSILOXANE	Ingestion	Rat	LD50 > 15,440 mg/kg
QUARTZ SILICA	Dermal		LD50 estimated to be > 5,000 mg/kg
QUARTZ SILICA	Ingestion		LD50 estimated to be > 5,000 mg/kg
SILANE TREATED SILICA	Dermal	Rabbit	LD50 > 5,000 mg/kg
SILANE TREATED SILICA	Inhalation-	Rat	LC50 > 0.691 mg/l
	Dust/Mist		
	(4 hours)		
SILANE TREATED SILICA	Ingestion	Rat	LD50 > 5,110 mg/kg
POLYETHYLENE GLYCOL, SILOXANE TERMINATED	Dermal	Rabbit	LD50 > 2,000 mg/kg
POLYETHYLENE GLYCOL, SILOXANE TERMINATED	Inhalation-	Rat	LC50 2 mg/l
	Dust/Mist		
	(4 hours)		
POLYETHYLENE GLYCOL, SILOXANE TERMINATED	Ingestion	Rat	LD50 > 2,000 mg/kg
C.I. PIGMENT BLUE 28	Ingestion	Rat	LD50 > 10,000 mg/kg

ATE = acute toxicity estimate

Skin Corrosion/Irritation

Name	Species	Value
VINYL POLYDIMETHYLSILOXANE	Rabbit	No significant irritation
QUARTZ SILICA		No significant irritation
SILANE TREATED SILICA	Rabbit	No significant irritation
POLYETHYLENE GLYCOL, SILOXANE TERMINATED	Rabbit	No significant irritation

Serious Eye Damage/Irritation

Name	Species	Value
VINYL POLYDIMETHYLSILOXANE	Rabbit	Mild irritant
SILANE TREATED SILICA	Rabbit	No significant irritation
POLYETHYLENE GLYCOL, SILOXANE TERMINATED	Rabbit	Severe irritant

Skin Sensitization

Name	Species	Value
SILANE TREATED SILICA	Human	Not sensitizing
	and	
	animal	
POLYETHYLENE GLYCOL, SILOXANE TERMINATED	Guinea	Not sensitizing
	pig	

Respiratory Sensitization

Name	Species Value
------	---------------

Germ Cell Mutagenicity

Name	Route	Value
QUARTZ SILICA	In Vitro	Some positive data exist, but the data are not
		sufficient for classification
QUARTZ SILICA	In vivo	Some positive data exist, but the data are not
		sufficient for classification
SILANE TREATED SILICA	In Vitro	Not mutagenic
POLYETHYLENE GLYCOL, SILOXANE TERMINATED	In Vitro	Not mutagenic
POLYETHYLENE GLYCOL, SILOXANE TERMINATED	In vivo	Not mutagenic

Carcinogenicity

Name	Route	Species	Value
QUARTZ SILICA	Inhalation	Human	Carcinogenic
		and	
		animal	
SILANE TREATED SILICA	Not	Mouse	Some positive data exist, but the data are not
	Specified		sufficient for classification

Reproductive Toxicity

Reproductive and/or Developmental Effects

Name	Route	Value	Species	Test Result	Exposure Duration
SILANE TREATED SILICA	Ingestion	Not toxic to female reproduction	Rat	NOAEL 509 mg/kg/day	1 generation
SILANE TREATED SILICA	Ingestion	Not toxic to male reproduction	Rat	NOAEL 497 mg/kg/day	1 generation
SILANE TREATED SILICA	Ingestion	Not toxic to development	Rat	NOAEL 1,350 mg/kg/day	during organogenesi s
POLYETHYLENE GLYCOL, SILOXANE TERMINATED	Ingestion	Some positive reproductive/developmental data exist, but the data are not sufficient for classification	Rat	NOAEL 450 mg/kg/day	premating & during gestation

Target Organ(s)

Specific Target Organ Toxicity - single exposure

Name	Route	Target Organ(s)	Value	Species	Test Result	Exposure
						Duration

Specific Target Organ Toxicity - repeated exposure

Specific Target Organ Toxicity - Tepeated exposure							
Name	Route	Target Organ(s)	Value	Species	Test Result	Exposure Duration	
QUARTZ SILICA	Inhalation	silicosis	Causes damage to organs through prolonged or repeated exposure	Human	NOAEL Not available	occupational exposure	
SILANE TREATED SILICA	Inhalation	respiratory system silicosis	All data are negative	Human	NOAEL Not available	occupational exposure	

Aspiration Hazard

Name	Value
1 Manie	v alue

Please contact the address or phone number listed on the first page of the SDS for additional toxicological information on this material and/or its components.

SECTION 12: Ecological information

Ecotoxicological information

Please contact the address or phone number listed on the first page of the SDS for additional ecotoxicological information on this material and/or its components.

Chemical fate information

Please contact the address or phone number listed on the first page of the SDS for additional chemical fate information on this material and/or its components.

SECTION 13: Disposal considerations

13.1. Disposal methods

Page 7 of 9

Dispose of contents/ container in accordance with the local/regional/national/international regulations.

Dispose of waste product in a permitted industrial waste facility. As a disposal alternative, incinerate in a permitted waste incineration facility. If no other disposal options are available, waste product may be placed in a landfill properly designed for industrial waste.

EPA Hazardous Waste Number (RCRA): Not regulated

SECTION 14: Transport Information

For Transport Information, please visit http://3M.com/Transportinfo or call 1-800-364-3577 or 651-737-6501.

SECTION 15: Regulatory information

15.1. US Federal Regulations

Contact 3M for more information.

311/312 Hazard Categories:

Fire Hazard - No Pressure Hazard - No Reactivity Hazard - No Immediate Hazard - Yes Delayed Hazard - No

15.2. State Regulations

Contact 3M for more information.

15.3. Chemical Inventories

The components of this product are in compliance with the new substance notification requirements of CEPA.

This material contains one or more substances not listed on the TSCA Inventory. Commercial use of this material is regulated by the FDA.

Contact 3M for more information.

15.4. International Regulations

Contact 3M for more information.

This SDS has been prepared to meet the U.S. OSHA Hazard Communication Standard, 29 CFR 1910.1200.

SECTION 16: Other information

NFPA Hazard Classification

Health: 0 Flammability: 1 Instability: 0 Special Hazards: None

National Fire Protection Association (NFPA) hazard ratings are designed for use by emergency response personnel to address the hazards that are presented by short-term, acute exposure to a material under conditions of fire, spill, or similar emergencies. Hazard ratings are primarily based on the inherent physical and toxic properties of the material but also include the toxic properties of combustion or decomposition products that are known to be generated in significant quantities.

 Document Group:
 18-3007-4
 Version Number:
 11.00

 Issue Date:
 10/07/14
 Supercedes Date:
 03/26/14

Page 8 of 9

DISCLAIMER: The information in this Safety Data Sheet (SDS) is believed to be correct as of the date issued. 3M MAKES NO WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, ANY IMPLIED WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE OR COURSE OF PERFORMANCE OR USAGE OF TRADE. User is responsible for determining whether the 3M product is fit for a particular purpose and suitable for user's method of use or application. Given the variety of factors that can affect the use and application of a 3M product, some of which are uniquely within the user's knowledge and control, it is essential that the user evaluate the 3M product to determine whether it is fit for a particular purpose and suitable for user's method of use or application.

3M provides information in electronic form as a service to its customers. Due to the remote possibility that electronic transfer may have resulted in errors, omissions or alterations in this information, 3M makes no representations as to its completeness or accuracy. In addition, information obtained from a database may not be as current as the information in the SDS available directly from 3M

3M USA SDSs are available at www.3M.com

Page 9 of 9

Safety Data Sheet

Copyright, 2019, 3M Company.

All rights reserved. Copying and/or downloading of this information for the purpose of properly utilizing 3M products is allowed provided that: (1) the information is copied in full with no changes unless prior written agreement is obtained from 3M, and (2) neither the copy nor the original is resold or otherwise distributed with the intention of earning a profit thereon.

 Document Group:
 18-3483-7
 Version Number:
 6.01

 Issue Date:
 06/21/19
 Supercedes Date:
 04/16/15

Product identifier

3MTM ESPETM EXPRESSTM LIGHT BODY REGULAR SET

ID Number(s):

70-2010-3657-4, 70-2010-3659-0, 70-2010-3660-8, 70-2014-1315-3, 70-2014-1316-1, 70-2014-1317-9

7000054281, 7000003160, 7000054282, 7100207074, 7100206986, 7100206985

Recommended use

Dental Product, Impressions

Supplier's details

MANUFACTURER: 3M

DIVISION: Oral Care Solutions Division

ADDRESS: 3M Center, St. Paul, MN 55144-1000, USA

Telephone: 1-888-3M HELPS (1-888-364-3577)

Emergency telephone number

1-800-364-3577 or (651) 737-6501 (24 hours)

This product is a kit or a multipart product which consists of multiple, independently packaged components. A Safety Data Sheet (SDS), Article Information Sheet (AIS), or Article Information Letter (AIL) for each of these components is included. Please do not separate the component documents from this cover page. The document numbers for components of this product are:

18-3003-3, 40-8637-7

DISCLAIMER: The information in this Safety Data Sheet (SDS) is believed to be correct as of the date issued.3MMAKES NO WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, ANY IMPLIED WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE OR COURSE OF PERFORMANCE OR USAGE OF TRADE. User is responsible for determining whether the 3Mproduct is fit for a particular purpose and suitable for user's method of use or application. Given the variety of factors that can affect the use and application of a 3Mproduct, some of which are uniquely within the user's knowledge and control, it is essential that the user evaluate the 3Mproduct to determine whether it is fit for a particular purpose and suitable for user's method of use or application.

3Mprovides information in electronic form as a service to its customers. Due to the remote possibility that electronic transfer may have resulted in errors, omissions or alterations in this information,3Mmakes no representations as to its completeness or accuracy. In addition, information obtained from a database may not be as current as the information in the SDS available directly from3M

3MTM ESPETM EXPRESSTM LIGHT BODY REGULAR SET

06/21/19

3M USA SDSs are available at www.3M.com

04/03/19

Safety Data Sheet

Copyright, 2019, 3M Company.

All rights reserved. Copying and/or downloading of this information for the purpose of properly utilizing 3M products is allowed provided that: (1) the information is copied in full with no changes unless prior written agreement is obtained from 3M, and (2) neither the copy nor the original is resold or otherwise distributed with the intention of earning a profit thereon.

 Document Group:
 18-3003-3
 Version Number:
 7.01

 Issue Date:
 04/03/19
 Supercedes Date:
 02/25/16

SECTION 1: Identification

1.1. Product identifier

3M™ ESPE™ EXPRESS™ LIGHT BODY REGULAR WASH BASE

Product Identification Numbers

ID Number UPC ID Number UPC

LE-FBAS-0927-7

1.2. Recommended use and restrictions on use

Recommended use

Dental Product, Impression material

Restrictions on use

For use only by dental professionals

1.3. Supplier's details

MANUFACTURER: 3M

DIVISION: Oral Care Solutions Division

ADDRESS: 3M Center, St. Paul, MN 55144-1000, USA

Telephone: 1-888-3M HELPS (1-888-364-3577)

1.4. Emergency telephone number

1-800-364-3577 or (651) 737-6501 (24 hours)

SECTION 2: Hazard identification

This document has been prepared in accordance with the U.S. OSHA Hazard Communication Standard, which requires the inclusion of all known hazards of the product or ingredients regardless of the potential risk. The risks of the hazards communicated in this document may vary depending on the potential for exposure.

2.1. Hazard classification

Not classified as hazardous according to OSHA Hazard Communication Standard, 29 CFR 1910.1200.

2.2. Label elements

Signal word

Not applicable.

04/03/19

Symbols

Not applicable.

Pictograms

Not applicable.

SECTION 3: Composition/information on ingredients

Ingredient	C.A.S. No.	% by Wt
QUARTZ SILICA	14808-60-7	35 - 55 Trade Secret *
VINYL POLYDIMETHYLSILOXANE	68083-19-2	15 - 40 Trade Secret *
DIMETHYL METHYL HYDROGEN SILICONE	68037-59-2	1 - 10 Trade Secret *
FLUID		
SILANE TREATED SILICA	67762-90-7	1 - 10 Trade Secret *
CHROMIUM OXIDE (CR2O3)	1308-38-9	1 - 5 Trade Secret *
POLY(DIMETHYLSILOXANE)	63148-62-9	1 - 5 Trade Secret *

^{*}The specific chemical identity and/or exact percentage (concentration) of this composition has been withheld as a trade secret.

SECTION 4: First aid measures

4.1. Description of first aid measures

Inhalation:

Remove person to fresh air. If you feel unwell, get medical attention.

Skin Contact:

Wash with soap and water. If signs/symptoms develop, get medical attention.

Eve Contact:

Flush with large amounts of water. Remove contact lenses if easy to do. Continue rinsing. If signs/symptoms persist, get medical attention.

If Swallowed:

Rinse mouth. If you feel unwell, get medical attention.

4.2. Most important symptoms and effects, both acute and delayed

See Section 11.1. Information on toxicological effects.

4.3. Indication of any immediate medical attention and special treatment required

Not applicable

SECTION 5: Fire-fighting measures

5.1. Suitable extinguishing media

In case of fire: Use a fire fighting agent suitable for ordinary combustible material such as water or foam to extinguish.

5.2. Special hazards arising from the substance or mixture

None inherent in this product.

Hazardous Decomposition or By-Products Substance

Condition

Carbon monoxide Carbon dioxide Irritant Vapors or Gases During Combustion During Combustion During Combustion

5.3. Special protective actions for fire-fighters

Wear full protective clothing, including helmet, self-contained, positive pressure or pressure demand breathing apparatus, bunker coat and pants, bands around arms, waist and legs, face mask, and protective covering for exposed areas of the head.

SECTION 6: Accidental release measures

6.1. Personal precautions, protective equipment and emergency procedures

Ventilate the area with fresh air. For large spill, or spills in confined spaces, provide mechanical ventilation to disperse or exhaust vapors, in accordance with good industrial hygiene practice. Refer to other sections of this SDS for information regarding physical and health hazards, respiratory protection, ventilation, and personal protective equipment.

6.2. Environmental precautions

Avoid release to the environment.

6.3. Methods and material for containment and cleaning up

Collect as much of the spilled material as possible. Place in a closed container approved for transportation by appropriate authorities. Clean up residue. Seal the container. Dispose of collected material as soon as possible in accordance with applicable local/regional/national/international regulations.

SECTION 7: Handling and storage

7.1. Precautions for safe handling

Avoid prolonged or repeated skin contact. Do not eat, drink or smoke when using this product. Wash thoroughly after handling. Avoid contact with oxidizing agents (eg. chlorine, chromic acid etc.)

7.2. Conditions for safe storage including any incompatibilities

Store away from heat. Store away from acids. Store away from strong bases. Store away from oxidizing agents. Store away from amines.

SECTION 8: Exposure controls/personal protection

8.1. Control parameters

Occupational exposure limits

If a component is disclosed in section 3 but does not appear in the table below, an occupational exposure limit is not available for the component.

Ingredient	C.A.S. No.	Agency	Limit type	Additional Comments
CHROMIUM (III)	1308-38-9	ACGIH	TWA(as Cr(III), inhalable	A4: Not class. as human
COMPOUNDS			fraction):0.003	carcin
			mg/m3;TWA(as Cr):0.5	
			mg/m3	
CHROMIUM (III)	1308-38-9	OSHA	TWA(as Cr):0.5 mg/m3	
COMPOUNDS				
Chromium, insoluble salts	1308-38-9	OSHA	TWA(as Cr):1 mg/m3	
QUARTZ SILICA	14808-60-7	ACGIH	TWA(respirable	A2: Suspected human
			fraction):0.025 mg/m3	carcin.
QUARTZ SILICA	14808-60-7	OSHA	TWA Table Z-	
			1(respirable):0.05	
			mg/m3;TWA Table Z-	

04/03/19

			3(respirable):0.1 mg/m3	
SILICA, AMORPHOUS	67762-90-7	OSHA	TWA concentration:0.8	
			mg/m3;TWA:20 millions of	
			particles/cu. ft.	

ACGIH: American Conference of Governmental Industrial Hygienists

AIHA: American Industrial Hygiene Association

CMRG: Chemical Manufacturer's Recommended Guidelines

OSHA: United States Department of Labor - Occupational Safety and Health Administration

TWA: Time-Weighted-Average STEL: Short Term Exposure Limit

CEIL: Ceiling

8.2. Exposure controls

8.2.1. Engineering controls

Use in a well-ventilated area.

8.2.2. Personal protective equipment (PPE)

Eye/face protection

Select and use eye/face protection to prevent contact based on the results of an exposure assessment. The following eye/face protection(s) are recommended:
Safety Glasses with side shields

Skin/hand protection

See Section 7.1 for additional information on skin protection.

Respiratory protection

None required.

SECTION 9: Physical and chemical properties

9.1. Information on basic physical and chemical properties

General Physical Form:Solid **Specific Physical Form:**Paste

Odor, Color, Grade: odorless, green, paste **Odor threshold** No Data Available pН Not Applicable **Melting point** No Data Available **Boiling Point** Not Applicable **Flash Point** No flash point **Evaporation rate** Not Applicable Flammability (solid, gas) Not Classified Flammable Limits(LEL) Not Applicable Flammable Limits(UEL) Not Applicable **Vapor Pressure** Not Applicable **Vapor Density** Not Applicable 1.4 - 1.5 g/ml **Density**

Specific Gravity > 1.4 [Ref Std: WATER=1]

Solubility in WaterNegligibleSolubility- non-waterNo Data AvailablePartition coefficient: n-octanol/ waterNot ApplicableAutoignition temperatureNo Data AvailableDecomposition temperatureNo Data Available

10

04/03/19

ViscosityNo Data AvailableMolecular weightNo Data AvailableVolatile Organic CompoundsNot ApplicablePercent volatileNo Data AvailableVOC Less H2O & Exempt SolventsNot ApplicableFlash Point as textNo flash point

SECTION 10: Stability and reactivity

10.1. Reactivity

This material may be reactive with certain agents under certain conditions - see the remaining headings in this section.

10.2. Chemical stability

Stable.

10.3. Possibility of hazardous reactions

Hazardous polymerization will not occur.

10.4. Conditions to avoid

Heat

10.5. Incompatible materials

Amines Strong acids Strong bases Strong oxidizing agents

10.6. Hazardous decomposition products

Substance

Condition

None known.

Refer to section 5.2 for hazardous decomposition products during combustion.

SECTION 11: Toxicological information

The information below may not be consistent with the material classification in Section 2 if specific ingredient classifications are mandated by a competent authority. In addition, toxicological data on ingredients may not be reflected in the material classification and/or the signs and symptoms of exposure, because an ingredient may be present below the threshold for labeling, an ingredient may not be available for exposure, or the data may not be relevant to the material as a whole.

This document has been prepared in accordance with the U.S. OSHA Hazard Communication Standard, which requires the inclusion of all known hazards of the product or ingredients regardless of the potential risk. The risks of the hazards communicated in this document may vary depending on the potential for exposure.

The information associated with the individual components of the uncured.

The information below represents toxicological information associated with the individual components of the uncured product. Once properly mixed and/or cured, the product is safe for its intended use.

11.1. Information on Toxicological effects

Signs and Symptoms of Exposure

Based on test data and/or information on the components, this material may produce the following health effects:

Inhalation:

No health effects are expected.

Skin Contact:

Contact with the skin during product use is not expected to result in significant irritation.

Eve Contact:

Contact with the eyes during product use is not expected to result in significant irritation.

Ingestion:

Gastrointestinal Irritation: Signs/symptoms may include abdominal pain, stomach upset, nausea, vomiting and diarrhea.

Additional Health Effects:

Carcinogenicity:

Exposures needed to cause the following health effect(s) are not expected during normal, intended use: Contains a chemical or chemicals which can cause cancer.

<u>Ingredient</u>	CAS No.	Class Description	Regulation
SILICA, CRYS AIRRESP	14808-60-7	Known human carcinogen	National Toxicology Program Carcinogens
QUARTZ SILICA	14808-60-7	Grp. 1: Carcinogenic to humans	International Agency for Research on Cancer

Toxicological Data

If a component is disclosed in section 3 but does not appear in a table below, either no data are available for that endpoint or the data are not sufficient for classification.

Acute Toxicity

Acute Toxicity			
Name	Route	Species	Value
Overall product	Ingestion		No data available; calculated ATE >5,000 mg/kg
QUARTZ SILICA	Dermal		LD50 estimated to be > 5,000 mg/kg
QUARTZ SILICA	Ingestion		LD50 estimated to be > 5,000 mg/kg
VINYL POLYDIMETHYLSILOXANE	Dermal	Rabbit	LD50 > 15,440 mg/kg
VINYL POLYDIMETHYLSILOXANE	Ingestion	Rat	LD50 > 15,440 mg/kg
DIMETHYL METHYL HYDROGEN SILICONE FLUID	Dermal	Rabbit	LD50 > 2,000 mg/kg
DIMETHYL METHYL HYDROGEN SILICONE FLUID	Ingestion	Rat	LD50 > 2,000 mg/kg
SILANE TREATED SILICA	Dermal	Rabbit	LD50 > 5,000 mg/kg
SILANE TREATED SILICA	Inhalation-	Rat	LC50 > 0.691 mg/l
	Dust/Mist		
	(4 hours)		
SILANE TREATED SILICA	Ingestion	Rat	LD50 > 5,110 mg/kg
CHROMIUM OXIDE (CR2O3)	Dermal	Professio	LD50 estimated to be > 5,000 mg/kg
		nal	
		judgeme	
		nt	
POLY(DIMETHYLSILOXANE)	Dermal	Rabbit	LD50 > 19,400 mg/kg
CHROMIUM OXIDE (CR2O3)	Inhalation-	Rat	LC50 > 5.41 mg/l
	Dust/Mist		
	(4 hours)		
CHROMIUM OXIDE (CR2O3)	Ingestion	Rat	LD50 > 5,000 mg/kg
POLY(DIMETHYLSILOXANE)	Ingestion	Rat	LD50 > 17,000 mg/kg

ATE = acute toxicity estimate

Skin Corrosion/Irritation

Name	Species	Value
QUARTZ SILICA	Professio	No significant irritation
	nal	
	judgeme	

3MTM FSPFTM FYPRFSSTM I ICHT RODV RECHI	AD WACII DACE

4/(

	nt	
VINYL POLYDIMETHYLSILOXANE	Rabbit	No significant irritation
SILANE TREATED SILICA	Rabbit	No significant irritation
CHROMIUM OXIDE (CR2O3)	Rabbit	No significant irritation
POLY(DIMETHYLSILOXANE)	Rabbit	No significant irritation

Serious Eye Damage/Irritation

Name	Species	Value
VINYL POLYDIMETHYLSILOXANE	Rabbit	Mild irritant
SILANE TREATED SILICA	Rabbit	No significant irritation
CHROMIUM OXIDE (CR2O3)	Rabbit	No significant irritation
POLY(DIMETHYLSILOXANE)	Rabbit	No significant irritation

Skin Sensitization

Name	Species	Value
SILANE TREATED SILICA	Human	Not classified
	and	
	animal	
CHROMIUM OXIDE (CR2O3)	similar	Not classified
	compoun	
	ds	

Respiratory Sensitization

For the component/components, either no data are currently available or the data are not sufficient for classification.

Germ Cell Mutagenicity

Name	Route	Value
QUARTZ SILICA	In Vitro	Some positive data exist, but the data are not sufficient for classification
QUARTZ SILICA	In vivo	Some positive data exist, but the data are not sufficient for classification
SILANE TREATED SILICA	In Vitro	Not mutagenic
CHROMIUM OXIDE (CR2O3)	In vivo	Not mutagenic
CHROMIUM OXIDE (CR2O3)	In Vitro	Some positive data exist, but the data are not sufficient for classification

Carcinogenicity

Carcinogenicity			
Name	Route	Species	Value
QUARTZ SILICA	Inhalation	Human	Carcinogenic
		and	
		animal	
SILANE TREATED SILICA	Not	Mouse	Some positive data exist, but the data are not
	Specified		sufficient for classification
CHROMIUM OXIDE (CR2O3)	Ingestion	Rat	Not carcinogenic

Reproductive Toxicity

Reproductive and/or Developmental Effects

Name	Route	Value	Species	Test Result	Exposure Duration
SILANE TREATED SILICA	Ingestion	Not classified for female reproduction	Rat	NOAEL 509 mg/kg/day	1 generation
SILANE TREATED SILICA	Ingestion	Not classified for male reproduction	Rat	NOAEL 497 mg/kg/day	1 generation
SILANE TREATED SILICA	Ingestion	Not classified for development	Rat	NOAEL 1,350 mg/kg/day	during organogenesi s
CHROMIUM OXIDE (CR2O3)	Ingestion	Not classified for female reproduction	Rat	NOAEL 2,000 mg/kg/day	90 days
CHROMIUM OXIDE (CR2O3)	Ingestion	Not classified for male reproduction	Rat	NOAEL 2,000	90 days

3M™ ESPE™ EXPRESS™ LIGHT BODY REGULAR WASH BASE

04/03/19

				mg/kg/day	
CHROMIUM OXIDE (CR2O3)	Ingestion	Not classified for development	Rat	NOAEL 2,000	90 days
				mg/kg/day	

Target Organ(s)

Specific Target Organ Toxicity - single exposure

Specific Turget organ	z onzierej s	mgre emposure				
Name	Route	Target Organ(s)	Value	Species	Test Result	Exposure Duration
CHROMIUM OXIDE (CR2O3)	Inhalation	respiratory system	Not classified	Rat	NOAEL 40 mg	

Specific Target Organ Toxicity - repeated exposure

Name	Route	Target Organ(s)	Value	Species	Test Result	Exposure Duration
QUARTZ SILICA	Inhalation	silicosis	Causes damage to organs through prolonged or repeated exposure	Human	NOAEL Not available	occupational exposure
SILANE TREATED SILICA	Inhalation	respiratory system silicosis	Not classified	Human	NOAEL Not available	occupational exposure
CHROMIUM OXIDE (CR2O3)	Inhalation	immune system respiratory system hematopoietic system liver kidney and/or bladder	Not classified	Rat	NOAEL 44 mg/m3	90 days

Aspiration Hazard

For the component/components, either no data are currently available or the data are not sufficient for classification.

Please contact the address or phone number listed on the first page of the SDS for additional toxicological information on this material and/or its components.

SECTION 12: Ecological information

Ecotoxicological information

Please contact the address or phone number listed on the first page of the SDS for additional ecotoxicological information on this material and/or its components.

Chemical fate information

Please contact the address or phone number listed on the first page of the SDS for additional chemical fate information on this material and/or its components.

SECTION 13: Disposal considerations

13.1. Disposal methods

Dispose of contents/ container in accordance with the local/regional/national/international regulations.

Prior to disposal, consult all applicable authorities and regulations to insure proper classification. Dispose of waste product in a permitted industrial waste facility. As a disposal alternative, incinerate in a permitted waste incineration facility. If no other disposal options are available, waste product may be placed in a landfill properly designed for industrial waste.

SECTION 14: Transport Information

For Transport Information, please visit http://3M.com/Transportinfo or call 1-800-364-3577 or 651-737-6501

04/03/19

SECTION 15: Regulatory information

15.1. US Federal Regulations

Contact 3M for more information.

EPCRA 311/312 Hazard Classifications:

Physical Hazards

Not applicable

Health Hazards

Not applicable

Section 313 Toxic Chemicals subject to the reporting requirements of that section and 40 CFR part 372 (EPCRA):

Ingredient C.A.S. No
CHROMIUM OXIDE (CR2O3) (CHROMIUM (III) 1308-38-9

COMPOUNDS)

15.2. State Regulations

Contact 3M for more information.

15.3. Chemical Inventories

This material contains one or more substances not listed on the TSCA Inventory. Commercial use of this material is regulated by the FDA.

Contact 3M for more information.

15.4. International Regulations

Contact 3M for more information.

This SDS has been prepared to meet the U.S. OSHA Hazard Communication Standard, 29 CFR 1910.1200.

SECTION 16: Other information

NFPA Hazard Classification

Health: 0 Flammability: 1 Instability: 0 Special Hazards: None

National Fire Protection Association (NFPA) hazard ratings are designed for use by emergency response personnel to address the hazards that are presented by short-term, acute exposure to a material under conditions of fire, spill, or similar emergencies. Hazard ratings are primarily based on the inherent physical and toxic properties of the material but also include the toxic properties of combustion or decomposition products that are known to be generated in significant quantities.

 Document Group:
 18-3003-3
 Version Number:
 7.01

 Issue Date:
 04/03/19
 Supercedes Date:
 02/25/16

DISCLAIMER: The information in this Safety Data Sheet (SDS) is believed to be correct as of the date issued.3MMAKES NO WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, ANY IMPLIED WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE OR COURSE OF PERFORMANCE OR USAGE OF TRADE. User is responsible for determining whether the 3Mproduct is fit for a particular purpose and suitable for user's method of use or application. Given the variety of factors that can affect the use and application of a 3Mproduct, some of

which are uniquely within the user's knowledge and control, it is essential that the user evaluate the 3M product to determine whether it is fit for a particular purpose and suitable for user's method of use or application.

3Mprovides information in electronic form as a service to its customers. Due to the remote possibility that electronic transfer may have resulted in errors, omissions or alterations in this information,3Mmakes no representations as to its completeness or accuracy. In addition, information obtained from a database may not be as current as the information in the SDS available directly from3M

3M USA SDSs are available at www.3M.com

Safety Data Sheet

Copyright,2019,3M Company.

All rights reserved. Copying and/or downloading of this information for the purpose of properly utilizing 3M products is allowed provided that: (1) the information is copied in full with no changes unless prior written agreement is obtained from 3M, and (2) neither the copy nor the original is resold or otherwise distributed with the intention of earning a profit thereon.

Document Group:40-8637-7Version Number:1.00Issue Date:06/21/19Supercedes Date:Initial Issue

SECTION 1: Identification

1.1. Product identifier

3MTM ESPETM EXPRESSTM LIGHT BODY REGULAR WASH CATALYST

1.2. Recommended use and restrictions on use

Recommended use

Dental Product, Dental impression material

Restrictions on use

For use only by dental professionals

1.3. Supplier's details

MANUFACTURER: 3M

DIVISION: Oral Care Solutions Division

ADDRESS: 3M Center, St. Paul, MN 55144-1000, USA

Telephone: 1-888-3M HELPS (1-888-364-3577)

1.4. Emergency telephone number

1-800-364-3577 or (651) 737-6501 (24 hours)

SECTION 2: Hazard identification

This document has been prepared in accordance with the U.S. OSHA Hazard Communication Standard, which requires the inclusion of all known hazards of the product or ingredients regardless of the potential risk. The risks of the hazards communicated in this document may vary depending on the potential for exposure.

2.1. Hazard classification

Not classified as hazardous according to OSHA Hazard Communication Standard, 29 CFR 1910.1200.

2.2. Label elements

Signal word

Not applicable.

Symbols

Not applicable.

Pictograms

06/21/19

Not applicable.

SECTION 3: Composition/information on ingredients

Ingredient	C.A.S. No.	% by Wt
VINYL POLYDIMETHYLSILOXANE	68083-19-2	45 - 55 Trade Secret *
QUARTZ SILICA	14808-60-7	40 - 50 Trade Secret *
SILANE TREATED SILICA	67762-90-7	1 - 10 Trade Secret *
C.I. PIGMENT BLUE 28	1345-16-0	< 0.3 Trade Secret *

^{*}The specific chemical identity and/or exact percentage (concentration) of this composition has been withheld as a trade secret.

SECTION 4: First aid measures

4.1. Description of first aid measures

Inhalation:

Remove person to fresh air. If you feel unwell, get medical attention.

Skin Contact

Wash with soap and water. If signs/symptoms develop, get medical attention.

Eve Contact:

Flush with large amounts of water. Remove contact lenses if easy to do. Continue rinsing. If signs/symptoms persist, get medical attention.

If Swallowed:

Rinse mouth. If you feel unwell, get medical attention.

4.2. Most important symptoms and effects, both acute and delayed

See Section 11.1. Information on toxicological effects.

4.3. Indication of any immediate medical attention and special treatment required

Not applicable

SECTION 5: Fire-fighting measures

5.1. Suitable extinguishing media

In case of fire: Use a fire fighting agent suitable for ordinary combustible material such as water or foam to extinguish.

5.2. Special hazards arising from the substance or mixture

None inherent in this product.

Hazardous Decomposition or By-Products

SubstanceConditionCarbon monoxideDuring CombustionCarbon dioxideDuring CombustionIrritant Vapors or GasesDuring Combustion

5.3. Special protective actions for fire-fighters

Wear full protective clothing, including helmet, self-contained, positive pressure or pressure demand breathing apparatus, bunker coat and pants, bands around arms, waist and legs, face mask, and protective covering for exposed areas of the head.

SECTION 6: Accidental release measures

6.1. Personal precautions, protective equipment and emergency procedures

Ventilate the area with fresh air. For large spill, or spills in confined spaces, provide mechanical ventilation to disperse or exhaust vapors, in accordance with good industrial hygiene practice. Observe precautions from other sections.

6.2. Environmental precautions

Avoid release to the environment.

6.3. Methods and material for containment and cleaning up

Collect as much of the spilled material as possible. Place in a closed container approved for transportation by appropriate authorities. Clean up residue. Seal the container. Dispose of collected material as soon as possible in accordance with applicable local/regional/national/international regulations.

SECTION 7: Handling and storage

7.1. Precautions for safe handling

Avoid prolonged or repeated skin contact. Do not eat, drink or smoke when using this product. Wash thoroughly after handling. Avoid contact with oxidizing agents (eg. chlorine, chromic acid etc.)

7.2. Conditions for safe storage including any incompatibilities

Store away from heat. Store away from acids. Store away from strong bases. Store away from oxidizing agents. Store away from amines.

SECTION 8: Exposure controls/personal protection

8.1. Control parameters

Occupational exposure limits

If a component is disclosed in section 3 but does not appear in the table below, an occupational exposure limit is not available for the component.

Ingredient	C.A.S. No.	Agency	Limit type	Additional Comments
Cobalt, inorganic compounds	1345-16-0	ACGIH	TWA(as Co):0.02 mg/m3	A3: Confirmed animal
				carcin.,
				Dermal/Respiratory
				Sensitizer
QUARTZ SILICA	14808-60-7	ACGIH	TWA(respirable	A2: Suspected human
			fraction):0.025 mg/m3	carcin.
QUARTZ SILICA	14808-60-7	OSHA	TWA Table Z-	
			1(respirable):0.05	
			mg/m3;TWA Table Z-	
			3(respirable):0.1 mg/m3	
SILICA, AMORPHOUS	67762-90-7	OSHA	TWA concentration:0.8	
			mg/m3;TWA:20 millions of	
			particles/cu. ft.	

ACGIH: American Conference of Governmental Industrial Hygienists

AIHA: American Industrial Hygiene Association

CMRG: Chemical Manufacturer's Recommended Guidelines

OSHA: United States Department of Labor - Occupational Safety and Health Administration

TWA: Time-Weighted-Average STEL: Short Term Exposure Limit

CEIL: Ceiling

8.2. Exposure controls

8.2.1. Engineering controls

Use in a well-ventilated area.

8.2.2. Personal protective equipment (PPE)

Eye/face protection

Select and use eye/face protection to prevent contact based on the results of an exposure assessment. The following eye/face protection(s) are recommended:
Safety Glasses with side shields

Skin/hand protection

See Section 7.1 for additional information on skin protection.

Respiratory protection

None required.

SECTION 9: Physical and chemical properties

9.1. Information on basic physical and chemical properties

General Physical Form:Solid **Specific Physical Form:**Paste

Odor, Color, Grade: Characteristic odor, blue, paste

Odor thresholdNo Data AvailablepHNot ApplicableMelting pointNo Data AvailableBoiling PointNot Applicable

Flash Point Flash point > 93 °C (200 °F)

Evaporation rateNot ApplicableFlammability (solid, gas)Not ClassifiedFlammable Limits(LEL)Not ApplicableFlammable Limits(UEL)Not ApplicableVapor PressureNot ApplicableVapor DensityNot ApplicableDensity1.4 - 1.5 g/cm3

Specific Gravity > 1.4 [*Ref Std*:WATER=1]

Solubility in Water Negligible Solubility- non-water No Data Available Partition coefficient: n-octanol/ water Not Applicable No Data Available **Autoignition temperature** No Data Available **Decomposition temperature** Viscosity No Data Available Molecular weight No Data Available **Volatile Organic Compounds** No Data Available

Percent volatile
VOC Less H2O & Exempt Solvents

No Data Available
No Data Available

SECTION 10: Stability and reactivity

10.1. Reactivity

This material may be reactive with certain agents under certain conditions - see the remaining headings in this section.

10.2. Chemical stability

Stable.

10.3. Possibility of hazardous reactions

Hazardous polymerization will not occur.

10.4. Conditions to avoid

Heat

10.5. Incompatible materials

Amines
Strong acids
Strong bases
Strong oxidizing agents

10.6. Hazardous decomposition products

Substance

Condition

None known.

Refer to section 5.2 for hazardous decomposition products during combustion.

SECTION 11: Toxicological information

The information below may not be consistent with the material classification in Section 2 if specific ingredient classifications are mandated by a competent authority. In addition, toxicological data on ingredients may not be reflected in the material classification and/or the signs and symptoms of exposure, because an ingredient may be present below the threshold for labeling, an ingredient may not be available for exposure, or the data may not be relevant to the material as a whole.

This document has been prepared in accordance with the U.S. OSHA Hazard Communication Standard, which requires the inclusion of all known hazards of the product or ingredients regardless of the potential risk. The risks of the hazards communicated in this document may vary depending on the potential for exposure.

11.1. Information on Toxicological effects

Signs and Symptoms of Exposure

Based on test data and/or information on the components, this material may produce the following health effects:

Inhalation:

This product may have a characteristic odor; however, no adverse health effects are anticipated.

Skin Contact:

Contact with the skin during product use is not expected to result in significant irritation.

Eve Contact:

Contact with the eyes during product use is not expected to result in significant irritation.

Ingestion:

Gastrointestinal Irritation: Signs/symptoms may include abdominal pain, stomach upset, nausea, vomiting and diarrhea.

Additional Health Effects:

Carcinogenicity:

06/21/19

Exposures needed to cause the following health effect(s) are not expected during normal, intended use: Contains a chemical or chemicals which can cause cancer.

<u>Ingredient</u>	CAS No.	Class Description	Regulation
SILICA, CRYS AIRRESP	14808-60-7	Known human carcinogen	National Toxicology Program Carcinogens
Generic: Cobalt compounds	1345-16-0	Anticipated human carcinogen	National Toxicology Program Carcinogens
Generic: Cobalt and inorganic cobalt	1345-16-0	Grp. 2B: Possible human carc.	International Agency for Research on Cancer
compounds			
Generic: Cobalt and inorganic cobalt	1345-16-0	Anticipated human carcinogen	National Toxicology Program Carcinogens
compounds			
QUARTZ SILICA	14808-60-7	Grp. 1: Carcinogenic to humans	International Agency for Research on Cancer

Toxicological Data

If a component is disclosed in section 3 but does not appear in a table below, either no data are available for that endpoint or the data are not sufficient for classification.

Acute Toxicity

Acute Toxicity	T	T ~ .	T., .
Name	Route	Species	Value
Overall product	Ingestion		No data available; calculated ATE >5,000 mg/kg
VINYL POLYDIMETHYLSILOXANE	Dermal	Rabbit	LD50 > 15,440 mg/kg
VINYL POLYDIMETHYLSILOXANE	Ingestion	Rat	LD50 > 15,440 mg/kg
QUARTZ SILICA	Dermal		LD50 estimated to be > 5,000 mg/kg
QUARTZ SILICA	Ingestion		LD50 estimated to be > 5,000 mg/kg
SILANE TREATED SILICA	Dermal	Rabbit	LD50 > 5,000 mg/kg
SILANE TREATED SILICA	Inhalation-	Rat	LC50 > 0.691 mg/l
	Dust/Mist		
	(4 hours)		
SILANE TREATED SILICA	Ingestion	Rat	LD50 > 5,110 mg/kg
C.I. PIGMENT BLUE 28	Dermal		LD50 estimated to be > 5,000 mg/kg
C.I. PIGMENT BLUE 28	Ingestion	Rat	LD50 > 10,000 mg/kg

ATE = acute toxicity estimate

Skin Corrosion/Irritation

Skiii Corrosion/irritation			
Name	Species	Value	
VINYL POLYDIMETHYLSILOXANE	Rabbit	No significant irritation	
QUARTZ SILICA	Professio	No significant irritation	
	nal		
	judgeme		
	nt		
SILANE TREATED SILICA	Rabbit	No significant irritation	

Serious Eve Damage/Irritation

20110 tt 5 L J C D tt 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	• • • • • • • • • • • • • • • • • • •					
Name	Species	Value				
VINYL POLYDIMETHYLSILOXANE	Rabbit	Mild irritant				
SILANE TREATED SILICA	Rabbit	No significant irritation				

Skin Sensitization

SILLI SUISIULUUI		
Name	Species	Value
SILANE TREATED SILICA	Human	Not classified
	and	
	animal	

Respiratory Sensitization

For the component/components, either no data are currently available or the data are not sufficient for classification.

Germ Cell Mutagenicity

Name	Route	Value

Page 6 of 9

3MTM ESPETM EXPRESSTM LIGHT BODY REGULAR WASH CATALYST	06/21/19

QUARTZ SILICA	In Vitro	Some positive data exist, but the data are not sufficient for classification
QUARTZ SILICA	In vivo	Some positive data exist, but the data are not sufficient for classification
SILANE TREATED SILICA	In Vitro	Not mutagenic

Carcinogenicity

Name	Route	Species	Value
QUARTZ SILICA	Inhalation	Human	Carcinogenic
		and	
		animal	
SILANE TREATED SILICA	Not	Mouse	Some positive data exist, but the data are not
	Specified		sufficient for classification

Reproductive Toxicity

Reproductive and/or Developmental Effects

Name	Route	Value	Species	Test Result	Exposure Duration
SILANE TREATED SILICA	Ingestion	Not classified for female reproduction	Rat	NOAEL 509 mg/kg/day	1 generation
SILANE TREATED SILICA	Ingestion	Not classified for male reproduction	Rat	NOAEL 497 mg/kg/day	1 generation
SILANE TREATED SILICA	Ingestion	Not classified for development	Rat	NOAEL 1,350 mg/kg/day	during organogenesi s

Target Organ(s)

Specific Target Organ Toxicity - single exposure

For the component/components, either no data are currently available or the data are not sufficient for classification.

Specific Target Organ Toxicity - repeated exposure

Name	Route	Target Organ(s)	Value	Species	Test Result	Exposure Duration
QUARTZ SILICA	Inhalation	silicosis	Causes damage to organs through prolonged or repeated exposure	Human	NOAEL Not available	occupational exposure
SILANE TREATED SILICA	Inhalation	respiratory system silicosis	Not classified	Human	NOAEL Not available	occupational exposure

Aspiration Hazard

For the component/components, either no data are currently available or the data are not sufficient for classification.

Please contact the address or phone number listed on the first page of the SDS for additional toxicological information on this material and/or its components.

SECTION 12: Ecological information

Ecotoxicological information

Please contact the address or phone number listed on the first page of the SDS for additional ecotoxicological information on this material and/or its components.

Chemical fate information

Please contact the address or phone number listed on the first page of the SDS for additional chemical fate information on this material and/or its components.

SECTION 13: Disposal considerations

06/21/19

13.1. Disposal methods

Dispose of contents/ container in accordance with the local/regional/national/international regulations.

Dispose of waste product in a permitted industrial waste facility. As a disposal alternative, incinerate in a permitted waste incineration facility. If no other disposal options are available, waste product may be placed in a landfill properly designed for industrial waste.

EPA Hazardous Waste Number (RCRA): Not regulated

SECTION 14: Transport Information

For Transport Information, please visit http://3M.com/Transportinfo or call 1-800-364-3577 or 651-737-6501.

SECTION 15: Regulatory information

15.1. US Federal Regulations

Contact 3M for more information.

EPCRA 311/312 Hazard Classifications:

Physical Hazards

Not applicable

Health Hazards

Not applicable

Section 313 Toxic Chemicals subject to the reporting requirements of that section and 40 CFR part 372 (EPCRA):

<u>Ingredient</u>	<u>C.A.S. No</u>	<u>% by Wt</u>
C.I. PIGMENT BLUE 28 (Cobalt compounds)	1345-16-0	< 0.3

15.2. State Regulations

Contact 3M for more information.

15.3. Chemical Inventories

This material contains one or more substances not listed on the TSCA Inventory. Commercial use of this material is regulated by the FDA.

Contact 3M for more information.

15.4. International Regulations

Contact 3M for more information.

This SDS has been prepared to meet the U.S. OSHA Hazard Communication Standard, 29 CFR 1910.1200.

SECTION 16: Other information

NFPA Hazard Classification

Health: 0 Flammability: 1 Instability: 0 Special Hazards: None

06/21/19

National Fire Protection Association (NFPA) hazard ratings are designed for use by emergency response personnel to address the hazards that are presented by short-term, acute exposure to a material under conditions of fire, spill, or similar emergencies. Hazard ratings are primarily based on the inherent physical and toxic properties of the material but also include the toxic properties of combustion or decomposition products that are known to be generated in significant quantities.

Document Group:40-8637-7Version Number:1.00Issue Date:06/21/19Supercedes Date:Initial Issue

DISCLAIMER: The information in this Safety Data Sheet (SDS) is believed to be correct as of the date issued.3MMAKES NO WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, ANY IMPLIED WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE OR COURSE OF PERFORMANCE OR USAGE OF TRADE. User is responsible for determining whether the 3Mproduct is fit for a particular purpose and suitable for user's method of use or application. Given the variety of factors that can affect the use and application of a 3Mproduct, some of which are uniquely within the user's knowledge and control, it is essential that the user evaluate the 3Mproduct to determine whether it is fit for a particular purpose and suitable for user's method of use or application.

3Mprovides information in electronic form as a service to its customers. Due to the remote possibility that electronic transfer may have resulted in errors, omissions or alterations in this information,3Mmakes no representations as to its completeness or accuracy. In addition, information obtained from a database may not be as current as the information in the SDS available directly from3M

3M USA SDSs are available at www.3M.com